Задачи с параметрами

Рабочая тетрадь

11 класс

Задачи с параметрами практически не представлены в школьном курсе математики. Между тем они включены в государственную итоговую аттестацию в 11 классе. Для решения задач с параметрами не требуется обладать знаниями, выходящими за рамки школьной программы. Однако непривычность формулировки обычно ставит в тупик учащихся, не имеющих опыта решения подобных задач.

Рабочая тетрадь включает следующие разделы: «Логарифмические уравнения и неравенства с параметрами», «Показательные уравнения и неравенства с параметрами» «Тригонометрические уравнения и неравенства с параметрами».

Параметр, присутствующий в условии задач, не создаёт слишком больших трудностей, но в то же время позволяет сформировать у учащихся отчетливое представление о параметрических задачах и основных принципах их решения.

В пособие включены: необходимый теоретический материал, примеры с решениями, упражнения для самостоятельной работы с ответами.

Логарифмические уравнения и неравенства с параметром

Пример 1: Определить при каких значениях параметра a уравнение $\log_3(x-3) = \log_9(3+ax)$ не имеет решений.

Решение: ОДЗ:
$$\begin{cases} x - 3 > 0 \\ 3 + ax > 0 \end{cases}$$

$$\log_3(x-3) = \log_9(3+ax) \iff 2\log_9(x-3) = \log_9(3+ax) \iff \begin{cases} \log_9(x-3)^2 = \log_9(3+ax) \\ x-3>0 \end{cases} \iff \begin{cases} (x-3)^2 = 3+ax \\ x-3>0 \end{cases}$$
$$\iff \begin{cases} x^2-(6+a)x+6=0 \\ x>0 \end{cases}$$

Решений нет при: 1) D < 0

$$2) \begin{cases} D \ge 0 \\ x_1 \le x_2 \le 3 \end{cases}$$

=

1)
$$D$$

 $(6+a)^2 - 4*6 = 36 + 12a - 24 + a^2 = 12 + 12a + a^2$
 $a^2 + 12 + 12a < 0$
 $D = 36-12=24$
 $x_{1,2} = -6 \pm \sqrt{24} = -6 \pm 2\sqrt{6}$

2)
$$D \ge 0$$

 $y(x) = x^2 - (6 + a)x + 6$, $y'(x) = 2x-6-a$; $y''(3) = -a$
 $y(3) = 9 - 18 - 3a + 6 = -3a - 3$.

$$\begin{cases} D < 0 \\ D \ge 0 \\ \frac{-y'(3)}{1} \le 0 \end{cases} \iff a \in (-6 - 2\sqrt{6}; -6 + 2)$$
$$\begin{cases} \frac{y(3)}{1} \ge 0 \\ a \in (-\infty; -6 - 2\sqrt{6}]U \left[-6 + 2\sqrt{x}; +\infty \right) \end{cases}$$

$$\begin{cases} a \ \mathcal{E}(-\infty; -6 - 2\sqrt{6}]U \left[-6 + 2\sqrt{x}; +\infty \right) \\ a \le -1 \end{cases}$$

$$-6 + 2\sqrt{6} < -1 -$$
 мервоначально верно $2\sqrt{6} < 5;$ $24 < 25 -$ верно

Ответ: (-∞; 1].

Пример 2: Уравнение $\log_2 x \log_2 4x = \log_2 ax \log_2 4ax$ имеет только два корня. При каких значениях параметра а это возможно?

Peшeниe:
$$D(y): \begin{cases} x > 0 \\ a > 0 \end{cases}$$
;

$$\log_2 x \log_2 4x = \log_2 ax \log_2 4ax;$$

$$\log_2 x(2 + \log_2 x) = (\log_2 a + \log_2 x)(\log_2 a + 2 + \log_2 x).$$
 Пусть $\log_2 x = t.$

$$\log_2 a = k$$
;

$$t(2+t) - (k+t)(k+2+t) = 0;$$

$$2t + t^2 - k^2 - 2k - kt - tk - 2t - t^2 = 0;$$

$$k^2 + 2k + 2kt = 0;$$

$$k*(k+2+2t)=0;$$

a)
$$k \neq 0 -$$

существует один корень $t = \frac{2-k}{2}$;

$$k = 0 -$$

бесконечное множество решений, т. е. a = 1.

Ответ: такого значения параметра а нет, чтобы уравнение $\log_2 x \log_2 4x = \log_2 ax \log_2 4ax$ имело только два решения.

Пример 3: При каких значениях параметра k уравнение $\log_2(4^x - 12) = k + x$ разрешимо?

Решение:
$$\log_2(4^x - 12) = k + x;$$

 $\log_2(4^x - 12) = \log_2 2^{k+x};$

$$4^{x} - 12 = 2^{k+x}$$

Пусть
$$2^x = t$$
.

$$t^2 - 2^k * t - 12 = 0;$$

$$D = (2k)^2 + 4 * 12 > 0 \quad \forall k;$$

$$t_{1,2} = \frac{2^k \pm 2\sqrt{2^k + 12}}{2}.$$

Так как
$$\begin{cases} x_1 + x_2 = -p \\ x_1 * x_2 = q \end{cases}, mo \begin{cases} q = -12 < 0 \\ -p = 2^k > 0 \end{cases}$$

Значит больший корень положителен.

Ho $t > 2\sqrt{3}$, чтобы существовал $\log_2(t^2 - 12)$ $(t > 2\sqrt{3}$ - условие существования логарифма).

$$2\sqrt{3}$$
 l_1

$$f(2\sqrt{3}) < 0$$
, тогда $t_1 > 2\sqrt{3}$; (f(t) = $t^2 - 2^k t - 12$

$$(2\sqrt{3})^2 - 2^k 2\sqrt{3} - 12 < 0;$$

$$12 - 2^k 2\sqrt{3} - 12 < 0;$$

$$-2^{k} * 2\sqrt{3} < 0$$
 для $\forall k$.

Omsem: при $\forall k$ существует единственный корень уравнения $\log_2(4^x - 12) = k + x,$

т. е. уравнение разрешимо.

Пример 4: При каких значениях параметра а неравенство $\log_a \frac{4+3|x|}{1+|x|} + \log_a \frac{6+5|x|}{1+|x|} > 1$ справедливо для любых x?

Решение: Так как $\frac{4+3|x|}{1+|x|} > 0$ и $\frac{6+5|x|}{1+|x|} > 0$ при $\forall x$, то

$$\log_a \frac{4+3|x|}{1+|x|} + \log_a \frac{6+5|x|}{1+x} = \log_a \left(\frac{4+3|x|}{1+|x|} * \frac{6+5|x|}{1+|x|}\right),$$

тогда
$$\log_a(\frac{4+3|x|}{1+|x|}*\frac{6+5|x|}{1+|x|}) > \log_a a.$$

а) Пусть a > 1, тогда, учитывая,

что
$$y = \log_a x$$
 – возрастающая, $\frac{4+3|x|}{1+|x|} * \frac{6+5|x|}{1+|x|} > a$.

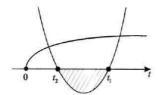
Выделим целую часть для каждой дроби и получим

$$\frac{4+3|x|}{1+|x|}=3+\frac{1}{1+|x|};\;\;\frac{6+5|x|}{1+|x|}=5+\frac{6+5|x|}{1+|x|}.$$
 Положим $\frac{1}{1+|x|}=t$, тогда $(5+t)(3+t)>a;\;t^2+8t+15-a>0.$

Так как t > 0, то это возможно для любых t > 0, если 15 - a > 0; т. е. при a < 15,

учитывая условия возрастания, 1 < a < 15.

б) 0 < a < 1, тогда $t^2 + 8t + 15 - a < 0$, что возможно не для всех положительных t, даже если D > 0. По условию этот случай не подходит.



Ответ: неравенство $\log_a \frac{4+3|x|}{1+|x|} + \log_a \frac{6+5|x|}{1+|x|} > 1$ справедливо для любых x при 1 < a < 15.

Пример 5: Найдите все значения параметра a, при которых число x = 14 является решением неравенства

$$(x-14)(x-26)\sqrt{a^2-24a\log_{13}(x-13)-25} \ge 0$$
, а число $x=26$ не является решением этого неравенства.

Решение: Неравенство равносильно $\begin{cases} a^2 - 24a \log_{13}(x-13) - 25 \ge 0 \\ (x-14)(x-26)(a^2 - 24a \log_{13}(x-13) - 25)^2 \ge 0 \end{cases}$ Пусть $f(x) = a^2 - 24a \log_{13}(x-13) - 25$;

Ответ: при $a \in [5; 25)$ число x = 14 является решением неравенства $(x - 14)(x - 26)\sqrt{a^2 - 24a\log_{13}(x - 13) - 25} \ge 0$, а число x = 26 не является решением этого неравенства.

Самостоятельная работа 1:

- 1. Найдите все значения параметра a, при которых уравнение $4\log_7 \sin x + a\log_7 \sin x a^2 + 4a + 5 = 0$ имеет хотя бы одно решение.
- 2. Найдите все значения параметра a, при которых только одно из чисел

x = 5 или x = 7 является решением неравенства.

Показательные уравнения и неравенства с параметром

Пример 1: Найдите все значения параметра a, при которых уравнение

$$25^x + (5a^2 + a + 4) * 5^x - a - 2 = 0$$
 имеет единственный корень.

Решение: $D = (5a^2 + a + 4)^2 + 4(a + 2)$. Так решать технически сложно, будем решать иначе, зная, что $5^x > 0$ всегда.

- а) Если -a-2 < 0, то корень всегда есть, и только один положительный $5^x = t > 0$, что и нужно. И так как a > -2, то D > 0.
- б) Если a < -2, то оба корня меньше нуля, и это не подходит $(5^x > 0)$, так как

$$5a^2 + a + 4 > 0$$
 для $\forall a$.

Ответ: при a > -2 уравнение $25^x + (5a^2 + a + 4) * 5^x - a - 2 = 0$ имеет единственный корень.

Пример 2: Найдите все значения параметра a, при каждом из которых решением системы неравенств

$$\begin{cases} 6^{x-a-3} \leq 36^{x-a+4} \\ 4^{x-2a-2} \geq 16^{x-3a+3} \end{cases}$$
 является отрезок длиной 3.
Решение:
$$\begin{cases} x-a-3 \leq 2x-2a+8 \\ x-2a-2 \geq 2x-6a+6 \end{cases}$$
 $\begin{cases} x \geq a-11 \\ x \leq 4a-8 \end{cases}$ тогда $a-11 \leq x \leq 4(a-2)$

Рассмотрим разность концов отрезка

$$4(a-2)-(a-11)=3;$$
 $3a-3=3;$ $a=2.$

Ответ: при a = 2 решением системы неравенств

$$\left\{ egin{array}{ll} 6^{x-a-3} \leq 36^{x-a+4} \ 4^{x-2a-2} \geq 16^{x-3a+3} \end{array}
ight.$$
 является отрезок длиной 3.

Пример 3: Найдите все значения параметра a, при которых ни одно из чисел 1 и - 3 не является корнем уравнения

$$(x^2 + 2x - 3)\sqrt{6^{x^2 + 2x - 3} + a^2 - 14a + 44} = 0.$$

Решение: Уравнение

$$(x^2 + 2x - 3)\sqrt{6^{x^2 + 2x - 3} + a^2 - 14a + 44} = 0$$
 равносильно
$$\begin{cases} 6^{x^2 + 2x - 3} + a^2 - 14a + 44 \ge 0 \\ (x^2 + 2x - 3)(6^{x^2 + 2x - 3} + a^2 - 14a + 44) = 0 \end{cases}$$

Если $x^2 + 2x - 3 = 0$, то x = 1 или x = -3 - 3то корни второго уравнения системы.

Пусть x = 1, тогда $6^0 + a^2 - 14a + 44 < 0$ (чтобы решения не подходили);

$$(a-5)(a-9) < 0; a \in (5;9).$$

Пусть x = -3, чтобы корни не подходили, тогда

$$6^0 + a^2 - 14a + 44 < 0;$$

$$(a-5)(a-9) < 0; \quad aE(5;9)$$

Ответ: при $a\mathcal{E}(5;9)$ x=1 u x=-3 не являются корнями уравнения $(x^2+2x-3)\sqrt{6^{x^2+2x-3}+a^2-14a+44}=0$.

Пример 4: Найдите все значения параметра a, при которых выражение x + y принимает наименьшее возможное значение, если (x; y) - решение системы

уравнений
$$\begin{cases} 3^x + 2^y = 3^{49a^2+1} + 2^{1-4a} \\ 3^x + 2^{1-4a} = 3^{49a^2+1} + 2^y \end{cases}$$

Решение:
$$\pm \begin{cases} 3^x + 2^y = 3^{49a^2+1} + 2^{1-4a} \\ 3^x + 2^{1-4a} = 3^{49a^2+1} + 2^y \end{cases}$$
 $\begin{bmatrix} 3^x = 3^{49a^2+1}, & \{49a^2+1, 2^y = 1-4a, \} \\ 2^y = 2^{1-4a}, & \{y = 1-4a, \} \end{cases}$

 $f(x; y) = x + y = 49a^2 - 4a + 2$ (квадратный трёхчлен).

При
$$a_0 = \frac{2}{49} \left(-\frac{b}{2a} \right)$$
 $t_0 = 49 * \frac{4}{49^2} - \frac{4*2}{49} + 2 = \frac{4-8+98}{49} = \frac{94}{49}$.

Ответ: при $\alpha = \frac{2}{49}$ выражение x + y принимает наименьшее возможное значение,

если (x; y) - решение системы уравнений

$$\begin{cases} 3^{x} + 2^{y} = 3^{49a^{2}+1} + 2^{1-4a} \\ 3^{x} + 2^{1-4a} = 3^{49a^{2}+1} + 2^{y} \end{cases}$$

Пример 5: Уравнение $4^{49x^2-70x+26} = \cos 14\pi x - 81a^2 - 72a - 13$ имеет решения. Найдите эти решения и укажите, при каких значениях параметра а это возможно.

Решение: Так как $4^{(7x-5)^2+1} \ge 4$ для $\forall x$

$$(49x^2 - 70x + 26 = (7x - 5)^2 + 1 \ge 1)$$
, TO

$$\cos 14\pi x - (9a + 4)^2 + 3 \ge 4$$

$$(81a^2 + 72a + 13 = (9a + 4)^2 - 3).$$

Значит $\cos 14\pi x \ge 1 + (9\alpha + 4)^2$, но $\cos 14\pi x \in [-1;1]$.

Значит возможно только $\cos 14\pi x = 1$.

если
$$a = -\frac{4}{9}$$
 $u x = \frac{5}{7}$.

$$14\pi x = 2\pi k$$
; $x = \frac{k}{7}$, no $x = \frac{5}{7}$, m.e. $k = 5$.

Значит $x = \frac{k}{7}$, где k = 5.

Ответ: при $\alpha = -\frac{4}{9}$ уравнение

$$4^{49x^2-70x+26}=\cos 14\pi x-81a^2-72a-13$$
 имеет решение $x=\frac{5}{7}$; при $a\neq -\frac{4}{9}$ решения нет.

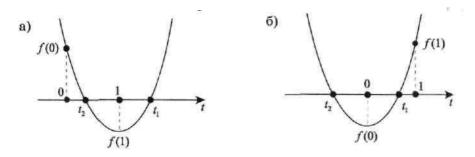
Самостоятельная работа 2:

- 1. Найдите все значения параметра a, при которых уравнение $49^x (8a 1) * 7^x + 16a^2 4a 2 = 0$ имеет только один корень.
- 2. При каких значениях параметра a уравнение $(x^2-2x-3)\sqrt{5^{x^2-2x-3}a^2+4a-33}=0$ имеет только два корня?
- 3. Решите уравнение $14^{25x^2-10x+2}=\cos 10\pi x-36a^2-60a-12$ и найдите все значения параметра a, при которых это возможно.

Тригонометрические уравнения и неравенства с параметром

Пример 1: При каких значениях параметра a уравнение $cos^4 2x - 2(a+2)cos^2 2x - (2a+5) = 0$ имеет хотя бы одно решение?

Решение: Пусть $\cos^2 2x = t$, $t \in [0;1]$, тогда $f(t) = t^2 - (a+2)t - (2a+5)$. Условием существования хотя бы одного корня на [0;1] Является f(1) * f(0) < 0.



$$(1 - 2(a+2) * 1 - 2a - 5)(-(2a+5)) \le 0;$$
$$-(-4a-8)(2a+5) \le 0;$$
$$4(a+2)(2a+5) \le 0.$$

Ответ: при $a \in [-2,5;-2]$ существует хотя бы один корень уравнения $\cos^4 2x - 2(a+2)\cos^2 2x - (2a+5) = 0$.

Пример 2: При каких значениях параметра a прямая y = a имеет хотя бы одну общую точку с графиком функции

$$y = \frac{tg^2x + 7}{3tgx + 1}?$$

Решение:
$$\frac{tg^2x+7}{3tax+1} = a$$
; $tg^2x - 3a tgx + 7 - a = 0$;

$$D = 9a^2 - 28 + 4a \ge 0;$$
 $9a^2 + 4a - 28 = 0;$

$$a_{1,2} = \frac{-2 \pm \sqrt{4 + 252}}{9} = \frac{-2 \pm 16}{9}; \quad \boxed{a = -2}$$

$$a = \frac{14}{9}.$$

Проверим
$$tgx = -\frac{1}{3}$$
; $\frac{1}{9} + a + 7 - a = 0$; $7\frac{1}{9} = 0$ - ложно.

Ответ: при $a \in (-\infty; -2]$ $U[1\frac{5}{9}; +\infty)$ прямая y = a имеет хотя бы одну общую точку с графиком функции $y = \frac{tg^2x+7}{3tax+1}$.

Пример 3: Найдите все значения параметра a, при которых имеет решение неравенство

$$4\sin^2(3x+8) \ge 49a^2 + 84a + 40.$$

Решение: Так как $sin^2(3x+8) \in [0;1]$, то $0 \le \frac{49a^2+84a+40}{4} \le 1$,

т.е.
$$\begin{cases} 49a^2 + 84a + 40 \ge 0 \\ 49a^2 + 84a + 36 \le 0 \end{cases}$$

$$\begin{cases} (7a - 6)^2 + 4 \ge 0 \\ (7a - 6)^2 \le 0 \end{cases}$$
 только при
$$a = \frac{6}{7}.$$

Ответ: неравенство $4\sin^2(3x+8) \ge 49a^2 + 84a + 40$ имеет решение только при $a = \frac{6}{7}$.

Пример 4: Решите уравнение

 $\sqrt{7\cos(6x+7)+32} = -20+10a-a^2$, выяснив, при каких значениях параметра a это возможно.

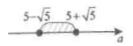
Решение: Уравнение равносильно
$$\begin{cases} -20 + 10a - a^2 \ge 0 \\ 7\cos(6x + 7) + 32 = (a^2 - 10a + 20)^2. \end{cases}$$

Ho
$$\cos(6x + 7) \in [-1; 1]$$
, и так как $\cos(6x + 7) = \frac{(a^2 - 10a + 20)^2 - 32}{7}$,

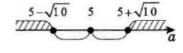
тогда
$$-1 \le \frac{(a^2 - 10a + 20)^2 - 32}{7} \le 1$$
,

T. e.
$$\begin{cases} (a^2 - 10a + 20)^2 \le 39 \\ (a^2 - 10a + 20)^2 \ge 25 \end{cases}$$

Ho
$$-20 + 10a - a^2 \ge 0$$
, значит



$$(a^2 - 10a + 20)^2 - 25 \ge 0;$$



$$(a^2 - 10 + 15)(a - 5)^2 \ge 0.$$

Тогда проверять нужно только a = 5, так как только $5 \in [5 - \sqrt{5}; 5 + \sqrt{5}].$

Итак,
$$(5^2 - 10 * 5 + 20)^2 \le 39$$
; $25 \le 39 -$ истина.

Тогда
$$\cos(6x+7) = \frac{(5^2-10*5+20)^2-32}{7}$$
, т. е.

$$cos(6x + 7) = -1;$$
 $6x + 7 = -\frac{\pi}{2} + 2\pi k;$

$$x = \frac{-\frac{\pi}{2} - 7 + 2\pi k}{6}$$
; $x = -\frac{\pi + 14}{12} + \frac{1}{3}\pi k$.

Ответ: только при a=5 уравнение $\sqrt{7\cos(6x+7)+32}=-20+10a-a^2$ имеет корни $x \in \{-\frac{\pi+14}{12}+\frac{1}{3}\pi k,\ k \in Z.$

Пример 5: Найдите все значения параметра а, при которых число $x = \frac{5\pi}{4}$ не является решением неравенства

$$(4x - 5\pi)\sqrt{a^2 \cos \frac{8x}{5} + 12a + 20} \le 0.$$

По условию, чтобы не было корней, $a^2 \cos \frac{8x}{5} + 12a + 20 < 0$ при $x = \frac{5\pi}{4}$,

T. e.
$$a^2 \cos(\frac{8}{5} * \frac{5}{4}\pi) + 12\alpha + 20 < 0$$
.

Значит $a^2 + 12a + 20 < 0$; тогда (a+2)(a+10) < 0.

Ответ: при $a \in (-10; -2)$ число $x = \frac{5\pi}{4}$ не является решением неравенства.

Пример 6: При каких значениях параметра а уравнение

$$\frac{1}{32}\cos 6x + \frac{3}{16}\cos 4x + \frac{15}{32}\cos 2x + \frac{5}{16} = \frac{a^2 - 8}{64}$$
 имеет решение?

Решение:
$$\frac{1}{32}\cos 6x + \frac{3}{16}\cos 4x + \frac{15}{32}\cos 2x + \frac{5}{16} = \frac{a^2 - 8}{64}$$
 *64;

$$2\cos 6x + 12\cos 4x + 30\cos 2x + 20 = a^2 - 8$$
, тогда

$$2\cos 6x + 12\cos 4x + 30\cos 2x = a^2 - 28.$$

Выразим левую часть уравнения вначале через $\cos 2x$:

$$2(4\cos^3 2x - 3\cos 2x) + 12(4\cos^2 2x - 1) + 30\cos 2x = a^2 - 28;$$

$$8\cos^3 2x + 24\cos^2 2x + 24\cos 2x = a^2 - 16$$

А теперь выразим левую часть уравнения через соѕх:

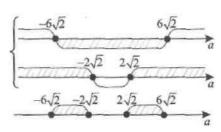
$$8(2\cos^2 x - 1)^3 + 24(2\cos^2 x - 1)^2 + 24(2\cos^2 x - 1) = a^2 - 16;$$

$$8(8\cos^6 x - 12\cos^4 x + 6\cos^2 x - 1) + 24(4\cos^4 x - 4\cos^2 x + 1) +$$

$$+24(2\cos^2 x - 1) = a^2 - 16$$

$$64\cos^4 x = a^2 - 8;$$

$$\cos^6 x = \frac{a^2 - 8}{64}$$
, no $\cos^6 x \in [0; 1]$.



Значит
$$\begin{cases} \frac{a^2-8}{64} \le 1\\ \frac{a^2-8}{64} \ge 0 \end{cases} \begin{cases} a^2 \le 72\\ a^2 \ge 8 \end{cases}.$$

Ответ: при $a \in [-6\sqrt{2}; -2\sqrt{2}]$ *U* $[2\sqrt{2}; 6\sqrt{2}]$ уравнение имеет решение.

Самостоятельная работа 3:

- 1. При каких значениях параметра а уравнение $\cos^4 3x 2(a+1)\cos^2 3x 2a 3 = 0$ имеет хотя бы одно решение?
- 2. Найдите все значения параметра а, при которых уравнение $\cos 26x + 2(4+11a) \sin 13x 154a + 41 = 0$ имеет решение.
- 3. Найти все значения параметра а, при которых число

 $x = \frac{2\pi}{11}$ не является корнем уравнения

$$\left(x-\frac{2\pi}{11}\right)(x-4\pi)\sqrt{a^2-a-81+9\cos\frac{11x}{2}}=0$$
, а число

 $x = 4\pi$ является корнем этого уравнения.

Ответы:

Самостоятельная работа 1:

- 1. Ответ: при a ∈ (-∞; -4)U[-1; 5] уравнение имеет хотя бы один корень.
- 2. *Ответ*: при $a \in [2;5]$ только x = 6 решение неравенства.

Самостоятельная работа 2:

Ответ: при $\alpha \in \left(-\frac{1}{4}; \frac{1}{2}\right]$ уравнение имеет только один

корень.

Ответ: при

$$a \in \left(-\infty; -2 - \sqrt{37}\right] U \left[-2 + \sqrt{37}; +\infty\right) U \left\{-8; 4\right\}$$

уравнение имеет два корня.

Ответ: уравнение имеет решение x = 0.2 при $a = -\frac{5}{6}$,

и оно единственное.

Самостоятельная работа 3:

Ответ: при а € [-1,5;-1].

Ответ: при $a \in \left[\frac{2}{11}; \frac{4}{11}\right]$.

Ответ: при $a \in (-9, -8]U$ [9,10).

Литература

- 1. В. Локоть. Задачи с параметрами: иррациональные уравнения, неравенства, системы, задачи с модулем. М.: АРКТИ, 2004.—64 с. (Абитуриент: Готовимся к ЕГЭ).
- 2. А. Х. Шахмейстер. Задачи с параметрами в ЕГЭ.— 1-е изд. —СПб.: «ЧеРо-на-Неве», 2004.—224 с.
- 3. П. И. Горнштейн, В. Б. Полонский, М. С. Якир. Задачи с параметрами. 2007 год
- 4. Л. Солуковцева. Линейные и дробно-линейные уравнения и неравенства с параметрами. М. Чистые пруды, 2007. 32 с. (Библиотечка «Первое сентября», серия «Математика». Вып.1(13)).
- Авт.-сост.: О.М. Борискова, В.А. Захарова, М.Е. Квиткова и др.; Под научной ред. В.И. Семенова; Под общей ред.: Т.П. Трушкиной. Предпрофильная подготовка. Математика: Учебнометодическое пособие. — Кемерово: Изд-во КРИПКиПРО, 2004. — 129 с.